Adding and Subtracting Fractions

Section A - Denominators are the same							
1.	$\frac{3}{5} + \frac{1}{5}$	2.	$\frac{8}{9} - \frac{1}{9}$	3.	$\frac{3}{10} + \frac{5}{10}$	4.	$\frac{15}{21} - \frac{8}{21}$
5.	$\frac{5}{12} - \frac{1}{12}$	6.	$\frac{2}{6} + \frac{1}{6}$	7.	$\frac{6}{7} - \frac{3}{7}$	8.	$\frac{2}{5} + \frac{1}{5}$
9.	$\frac{2}{7} + \frac{8}{7}$	10.	$\frac{3}{13} + \frac{2}{13}$	11.	5 2 - + - 8 8	12.	$\frac{7}{15} + \frac{4}{5}$

Section B - Denominators the different								
1.	$\frac{3}{8} + \frac{1}{4}$	2.	$\frac{8}{9} - \frac{1}{3}$	3.	$\frac{3}{5} + \frac{7}{10}$	4.	$\frac{5}{7} - \frac{8}{21}$	
5.	$\frac{3}{4} - \frac{1}{12}$	6.	$\frac{2}{5} + \frac{7}{20}$	7.	$\frac{4}{7} - \frac{2}{35}$	8.	$\frac{1}{4} + \frac{3}{16}$	
9.	$\frac{5}{7} - \frac{2}{49}$	10.	$\frac{5}{24} + \frac{3}{8}$	11.	$\frac{5}{16} + \frac{1}{2}$	12.	$\frac{1}{25} + \frac{4}{5}$	

Section C - Denominators are different								
1.	$\frac{3}{5} + \frac{1}{7}$	2.	$\frac{1}{9} + \frac{2}{5}$	3.	$\frac{1}{2} + \frac{1}{3}$	4.	$\frac{5}{6} - \frac{3}{8}$	
5.	$\frac{5}{8} - \frac{1}{12}$	6.	$\frac{2}{5} + \frac{1}{4}$	7.	$\frac{2}{3} - \frac{3}{7}$	8.	$\frac{2}{3} + \frac{1}{5}$	
9.	$\frac{5}{7} + \frac{3}{5}$	10.	$\frac{3}{4} + \frac{2}{3}$	11.	$\frac{5}{8} + \frac{2}{3}$	12.	$\frac{7}{12} + \frac{4}{5}$	

Section D - Worded Questions You must show your working

- 1. Andy and Bob have a pizza each. After they have eaten some of their pizzas, Andy has $\frac{1}{3}$ of his pizza left and Bob has $\frac{1}{4}$ of his left. What fraction of pizza do they have left in total?
- 2. Charlene has a bag of sweets. She gives $\frac{2}{5}$ to her friend and eats $\frac{1}{4}$. What fraction of the bag of sweets does Charlene have left?
- 3. Dave and Ed are putting together bags of marbles to sell for charity. Dave has $\frac{3}{5}$ of a bag left over and Ed has $\frac{2}{3}$ of a bag left. Can they combine what they each have left to make another bag?
- 4. Freya wants to make two cakes. She has $\frac{3}{4}$ of a bag of flour. The first cake requires $\frac{2}{5}$ of a bag of flour and the second cake needs $\frac{3}{10}$ of a bag of flour. Does Freya have enough flour to make both cakes

	Section E - Denominators are different								
1.	$1\frac{1}{2} + \frac{1}{4}$	2.	$2\frac{2}{3} + \frac{2}{9}$	3.	$1\frac{3}{5} + 3\frac{7}{10}$	4.	$2\frac{1}{6} + 1\frac{1}{3}$		
5.	$2\frac{1}{3} + 1\frac{2}{5}$	6.	$4\frac{5}{7} + 2\frac{1}{4}$	7.	$1\frac{5}{6} + 2\frac{3}{4}$	8.	$3\frac{1}{4} + 2\frac{7}{9}$		

	Section F - Denominators are different								
1.	$1\frac{1}{2} - \frac{1}{4}$	2.	$2\frac{2}{3} - \frac{2}{9}$	3.	$4\frac{3}{5} - 3\frac{7}{10}$	4.	$2\frac{1}{6} - 1\frac{1}{3}$		
5.	$2\frac{1}{3} - 1\frac{2}{5}$	6.	$4\frac{5}{7}-2\frac{1}{4}$	7.	$3\frac{5}{6} - 2\frac{3}{4}$	8.	$3\frac{1}{4} - 2\frac{7}{9}$		

Section G - Denominators are different

- 1. George's van can carry a maximum of 5 tonnes. George needs to deliver two loads weighing $3\frac{1}{4}$ tonnes and $1\frac{5}{6}$ tonnes. Can George take both loads at once? (You must show your workings)
- Harriet is sowing grass seed in her garden. She has $1\frac{2}{3}$ bags of grass seed. Her front garden needs $\frac{7}{8}$ of a bag and the back garden needs $\frac{5}{6}$ of a bag. Does Harriet have enough grass seed? (You must show your workings)